Visualise the results of F test to compare two variances, Student’s t-test, test of equal or given proportions, Pearson’s chi-squared test for count data and test for association/correlation between paired samples.
# CRAN installation: install.packages("gginference") # Or the development version from GitHub: # install.packages("devtools") devtools::install_github("okgreece/gginference")
The rejection regions for one sample t-test with normal population and σ2 unknown are calculated using ggttest
function. The following table shows the rejection regions which is calculated with gginference depending the specified parameters in t.test
.
H0 | H1 | Rejection Region of gginference |
Parameters of t.test
|
---|---|---|---|
μ = μ0 | μ < μ0 | R = {z < − za} |
|
μ > μ0 | R = {z > za} |
|
|
μ ≠ μ0 | R = {|z| > za/2} |
|
where
ggttest
is also used to calculate rejection region for one sample t-test with normal population and n < 30 and σ2 unknown.
H0 | H1 | Rejection Region of gginference |
Parameters of t.test
|
---|---|---|---|
μ = μ0 | μ < μ0 | R = {t < − tn − 1, a} |
|
μ > μ0 | R = {t > tn − 1, a} |
|
|
μ ≠ μ0 | R = {|t| > tn − 1, a/2} |
|
where
Next table shows the rejection regions of two independent samples t-test with normal populations and σ12 = σ22. ggttest
is also used to visualize this test.
H0 | H1 | Rejection Region of gginference |
Parameters of t.test
|
---|---|---|---|
μ1 − μ2 = d0 | μ1 − μ2 < d0 | R = {t < − tn1 + n2 − 2, a} |
|
μ1 − μ2 > d0 | R = {t > tn1 + n2 − 2, a} |
|
|
μ1 − μ2 ≠ d0 | R = {|t| > tn1 + n2 − 2, a/2} |
|
where
ggttest
is used to visualize two independent samples t-test with normal populations and σ12 σ22. The following table shows the rejection regions of this test.
H0 | H1 | Rejection Region of gginference |
Parameters of t.test
|
---|---|---|---|
μ1 − μ2 = d0 | μ1 − μ2 < d0 | R = {t < − tν, a} |
|
μ1 − μ2 > d0 | R = {t > tν, a} |
|
|
μ1 − μ2 ≠ d0 | R = {|t| > tν, a/2} |
|
where
and ν degrees of freedom with
ggttest
is used also to visualize the results of the paired sample Student’s t-test. Next table shows th rejection region of this test.
H0 | H1 | Rejection Region of gginference |
Parameters of t.test
|
---|---|---|---|
μ1 − μ2 = d0 | μ1 − μ2 < d0 | R = {t < − tn − 1, a} |
|
μ1 − μ2 > d0 | R = {t > tn − 1, a} |
|
|
μ1 − μ2 ≠ d0 | R = {|t| > tn − 1, a/2} |
|
where
ggproptest()
is used to visualize one-proportion z-test. The rejection regions are shown below.
H0 | H1 | Rejection Region of gginference |
Parameters of prop.test()
|
---|---|---|---|
p = p0 | p < p0 | R = {z < − za} |
|
p > p0 | R = {z > za} |
|
|
p ≠ p0 | R = {|z| > za/2} |
|
where
The results of two-proportion z-test are visualized using ggproptest()
and next table shows the rejection regions.
H0 | H1 | Rejection Region of gginference |
Parameters of prop.test()
|
---|---|---|---|
p1 − p2 = d0 | p1 − p2 < d0 | R = {z < − za} |
|
p1 − p2 > d0 | R = {z > za} |
|
|
p1 − p2 ≠ d0 | R = {|z| > za/2} |
|
where
ggvartest
is used to visualize the results of the paired sample Student’s t-test. The rejection region that is used in this test is shown below.
H0 | H1 | Rejection Region of gginference |
Parameters of var.test
|
---|---|---|---|
σ12 / σ22 = 1 | σ12 / σ22 < 1 | R = {F > Fn1 − 1, n2 − 1, 1 − a} |
|
σ12 / σ22 > 1 | R = {F > Fn1 − 1, n2 − 1, a} |
|
|
σ12 / σ22≠ 1 | R = {F > Fn1 − 1, n2 − 1, a/2} |
|
where
ggcortest
is usesd to visualize the results of test for correlation between paired samples. The following table shows the rejection region of this test.
H0 | H1 | Rejection Region of gginference |
Parameters of cor.test
|
---|---|---|---|
𝜚 = 0 | 𝜚 ≠ 0 | R = {|t| > tn − 2, a/2} |
|
where
The results of Pearson’s chi-squared test for count data are visulized using ggchisqtest
. Next table shows the rejection region of this test.
H0 | H1 | Rejection Region of gginference |
Parameters of chisq.test
|
---|---|---|---|
Two variables are independent | Two variables are not independent | R = {X2 > χa/22} |
|
where
ggaov
is used to visualize the results of ANOVA F-test. Table below shows rejection region of Anova F-stest.
H0 | H1 | Rejection Region of gginference |
Parameters of aov
|
---|---|---|---|
H0 : μ1 = μ2= … = μk | Not all three population means are equal | R = {F > Fk − 1, n − k, a} |
|
where
If you encounter a bug, please feel free to open an issue with a minimal reproducible example.