Introduction
This document describes the use of the functions implemented in TimeSeries.OBeu package in OpenCPU environment, after installing OpenCPU and TimeSeries.OBeu package on your OpenCPU server address(/ocpu/test).
How to use functions
../library/ {name of the library} /R/ {function}
-
If you want to see the function parameters you should:
-
To run a function you should:
Then you can click on Ajax Request.
OpenCPU and TimeSeries.OBeu
ts.analysis
In this example we will use ts.analysis
function that returns in a single call a json string or a list with the following components:
ts.analysis
components
acf.parameters |
- acf
- acf.lag
- confidence.interval.up
- confidence.interval.low
|
- ACF values of the input time series
- Lags at which the acf is estimated
- Upper limit of the confidence interval
- Lower limit of the confidence interval
|
pacf.parameters |
- pacf
- pacf.lag
- confidence.interval.up
- confidence.interval.low
|
- PACF values of the input time series
- Lags at which the pacf is estimated
- Upper limit of the confidence interval
- Lower limit of the confidence interval
|
acf.residuals.parameters |
- acf.res
- acf.res.lag
- confidence.interval.up
- confidence.interval.low
|
- ACF values of the model residuals
- Lags at which the acf is estimated of the model residuals
- Upper limit of the confidence interval
- Lower limit of the confidence interval
|
pacf.residuals.parameters |
- pacf.res
- pacf.res.lag
- confidence.interval.up
- confidence.interval.low
|
- Pacf values of the model residuals
- Lags at which the pacf is estimated of the model residuals
- Upper limit of confidence interval
- Lower limit of confidence interval
|
stl.plot |
- trend
- trend.ci.up
- trend.ci.low
- seasonal
- remainder
- time
|
- Trend component
- Up limit for trend component
- Low limit for trend component
- Seasonal component
- Remainder component
- Time of the series was sampled
|
stl.general |
- stl.degree
- degfr
- degfr.fitted
- fitted
|
- Degree of fit
- Effective degrees of freedom
- Fitted degrees of freedom
- Model’s fitted values
|
residuals |
|
|
compare |
- arima.order
- arima.coef
- arima.coef.se
- covariance.coef
- resid.variance
- not.used.obs
- used.obs
- loglik
- aic
- bic
- gcv
- aicc
|
- Arima order
- AR, MA and regression coefficients
- Standard error of the coefficients
- Variance of the coefficients
- Residuals variance
- Number of not used observations
- Used observations
- Maximized log-likelihood,
- AIC value
- BIC value
- Generalized cross-validation statistic
- Second-order AIC
|
forecasts |
- ts.model
- data_year
- data
- predict_time
- predict_values
- up80
- low80
- up95
- low95
|
- A string indicating the arima orders
- Time of time series data
- Time series values
- Time of the predicted values
- Predicted values
- Upper 80% confidence limit
- Lower 80% confidence limit
- Upper 95% confidence limit
- Lower 95% confidence limit
|
Select library and function
Go to: yourserver/ocpu/test
Copy and paste the following function to the endpoint
../library/TimeSeries.OBeu/R/ts.analysis
# library/ {name of the library} /R/ {function}
-
Select Method:
Post
Adding parameters parameters
Click add parameters every time you want to add a new parameters and values.
-
Define the input data:
-
Param Name:
tsdata
-
Param Value: e.g.
Athens_executed_ts
-
Define the prediction steps parameter:
-
Param Name:
prediction.steps
-
Param Value:
2
You add likewise x.order parameter to fit a specific arima order, see TimeSeries.OBeu reference manual for further details.
- Ready! Click on Ajax request!
Results
copy the /ocpu/tmp/{this_id_number}/R/.val (second on the right panel)
finally, paste yourserver/ocpu/tmp/{this_id_number}/R/.val
on a new tab.